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Solution of the Percus-Yevick Equation 
Coexistence Region of a Simple Fluid 

P. A. Monson 2 and P. T. Cummings  3 

in the 

There has been much recent interest in the behavior of integral-equation 
theories for the distribution functions of a fluid near the critical point and in the 
two-phase region. For most systems, implementation of these theories 
necessitates numerical solution of the integral equations. However, for two 
examples, the adhesive hard sphere fluid in the Percus-Yevick approximation 
and the hard sphere plus Yukawa tail model in the mean spherical 
approximation, analytical solutions of the Ornstein-Zernike equation are 
available. In this work we consider the comparison of results obtained via 
numerical methods with the analytical solution of the Percus-Yevick equation 
for the adhesive hard sphere fluid. This complements a recent study by us of the 
mean spherical approximation for the hard sphere plus Yukawa tail fluid. This 
allows us to examine carefully how errors arise in the numerical solutions. We 
examine the accuracy of numerical calculations of the critical exponents as well 
as the interpretation of solutions obtained in the coexistence region. We discuss 
the implications of this work for applications to more realistic potentials where 
only numerical solutions are available. 

KEY WORDS: critical phenomena; integral-equation theory; Ornstein-Zer- 
nike equation; Percus-Yevick theory. 

1. I N T R O D U C T I O N  

An important problem in the equilibrium theory of fluids is the develop- 
ment of thermodynamic theories which correctly describe the non- 
analyticity of the free energy at the critical point as well as accurately 
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predicting the location of the critical point and the behavior of the free 
energy away from the critical region. For three-dimensional systems, 
accurate descriptions of the critical region, such as the renormalization- 
group approach, are presently restricted to lattice-gas models. Although the 
critical exponents obtained will be the same for all other Hamiltonians in 
the same universality class, lattice-gas models do not provide a realistic 
description of the overall phase diagram of a fluid. It is a natural 
progression, then, to investigate the applicability to the critical region of 
theoretical approaches which have had some success in describing the ther- 
modynamics outside the critical region. 

Recent interest in such studies was stimulated by the work of Kozak, 
Luks, and collaborators on the solution of the Yvon-Born Green equation 
in the Kirkwood superposition approximation (YBG-KSA) applied to the 
square well fluid in three dimensions I-1 10]. Although it at first appeared 
[2-4] that the YBG-KSA theory yielded nonclassical critical exponents in 
close agreement with experimental values, subsequent analysis by Fishman 
and Fisher [6, 7] has shown that within the YBG-KSA theory, there is in 
fact no critical point for the square well fluid in three dimensions. Unfor- 
tunately, exact analytical solutions to this integral equation are unknown 
and it seems evident that the origin of the uncertainty in the behavior of 
the YBG-KSA theory in the critical region lies in the errors which arise 
from solving the integral equation numerically. 

We have recently begun a study of the critical behavior of numerical 
solutions to a different class of integral-equation theories which arise when 
various closure relationships are combined with the Ornstein-Zernike 
(O-Z) equation. We have chosen to study this class of theories for two 
reasons. First, in general these theories are known to give better results 
than the YBG-KSA theory away from the critical region, and second, 
analytical solutions based on the Baxter factorization method [-1l] are 
available in two cases for Hamiltonians exhibiting critical behavior. These 
are the hard-core Yukawa fluid (HCYF; consisting of hard spheres with 
attractive interactions of the Yukawa form), for which the O-Z equation is 
analytically soluble in the mean spherical approximation (MSA) [ 12], and 
the adhesive hard sphere fluid (AHSF), for which the O Z equation is 
analytically soluble in the Percus-Yevick (P-Y) approximation [-13]. The 
behavior of these approximations in the critical region has been established 
analytically by Baxter [13] and Fishman and Fisher [14] for the AHSF in 
the P-Y approximation and by Cummings and Stell [-15] for the HCYF in 
the MSA. 

The essential feature of our work is the rather simple but important 
exercise of using a problem with an analytical solution space to evaluate a 
numerical method prior to using the method to study problems for which 
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the analytical solutions are unknown. We have recently [16] presented 
such a study of the HCYF in the MSA, and in the interest of brevity the 
reader is referred to that paper for a more extensive review of the recent 
studies of the critical behavior of integral-equation theories based on the 
O -Z  equation. The present paper describes our study of the AHSF in the 
P-Y approximation. In Ref. 16 we noted that the behavior of the MSA at 
the critical point was intimately linked with the solution space in the 
vicinity of and inside the spinodal curve. Inside the spinodal curve there is 
a region where the Baxter method admits no real solutions to the MSA for 
the HCYF. Instead, two complex conjugate solutions arise and we presen- 
ted these in Ref. 16. Similar behavior occurs in the solution of the P Y 
theory for the AHSF, as we describe shortly. In the present work on the 
AHSF in the P-Y approximation we have introduced an innovation by 
relaxing the restrictions on the numerical algorithm to allow convergence 
to complex solutions, and such solutions have been found. 

The remainder of this paper is organized as follows. In Section 2 we 
describe the AHSF model and review the known analytical results near the 
critical point. In Section 3 we outline our numerical techniques. Section 4 
gives a comparison of the analytical and numerical results. Finally, in Sec- 
tion 5 we present our conclusions and discuss the extension of our work to 
other Hamiltonians for which no analytical solutions are available. A more 
comprehensive account of this work with details of the numerical techni- 
ques will be given elsewhere. 

2. THE AHSF MODEL 

The AHSF model was formulated by Baxter [13] as a limiting case of 
the square well potential for which the P-Y theory would have an 
analytical solution. The interaction potential is given by 

= - l n [ R / 1 2 r ( R - a ) ] ,  ~ < r < R  (1) 

=0 ,  r >  R 

evaluated in the limit R--* a so that the Boltzmann factor becomes 

e x p [ - f l u ( r ) ]  = a6(r - a)/12z, r ~< 
(2) 

= 1, r > a  

The parameter r can be regarded as a dimensionless measure of the 
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temperature of the system. A central result of Baxter's solution of the P Y 
equation for this potential is the quadratic equation 

1/22/12 - [~//(1 - r/) + z] 2 + (1 + ~//2)/(1 - q)2 = 0 (3) 

where r/ is the volume fraction of spheres in the system and 2 is a 
parameter which determines the magnitude of the delta function con- 
tribution to the pair distribution function at r = a. Knowledge of 2(r/, ~) is 
sufficient to determine the contribution of the attractive interactions to the 
thermodynamic properties. It can be shown that the compressibility 
equation of state has a critical point given by 

zo = (2 - x/2)/6 ~ 0,09763 

~/c = ( 3 ~ / 2 -  4)/2 ~0.1213 (4) 

Pc ~3 = 6r/Jrt ~ 0.2317 

The critical exponents have classical values. However, the critical 
isotherm displays a large asymmetry with respect to the critical point which 
is caused by nonclassical scaling functions [14]. Some important features 
of the analytical solution space of the approximation are illustrated in Figs. 
1 and 2. Figure 1 shows the three regions of the solution space. Inside 
region I, the solutions are real, the inverse compressibility is positive, and 
the correlations decay at large separations. The boundary between region I 
and region II is the spinodal curve. In region II the solutions are real and 
the inverse compressibility positive, but the total correlation function h(r) 
diverges at large r. In region III there are no real solutions, but by analytic 
continuation two complex conjugate solutions may be found. The point 
where the curves which separate the regions meet coincides with the critical 
point. This contrasts with the case of the HCYF-MSA problem [16], 
where the region of complex solutions does not extend up to the critical 
temperature. Figure2 shows several isotherms of the inverse com- 
pressibility at the critical temperature and subcritical temperatures. The 
two singularities in each subcritical isotherm occur at the boundaries of 
region III. Thus between these two points the curve gives the real part of 
the inverse compressibility. On the vapor side, however, the region III 
extends beyond the locus of zeros of the real part of the bulk modulus. 
Thus there is no spinodal curve in the true sense on the vapor side of the 
coexistence region. Notice also that on the liquid side there are two zeros 
in the bulk modulus. The limit of stability of the liquid corresponds to a 
point of inflection in the pressure. The zero of the bulk modulus 
corresponding to a pressure minimum lies inside the region of complex 
solutions. 
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Fig. 1. The three regions of the solution space found 
analytically for the AHSF in the P-Y approximation. Inside 
region I, the solution is real, the compressibility is positive, 
and the correlation functions decay at large r. The boundary 
between region I and region II is the spinodal curve. In region 
II, the solution is real, and the compressibility positive. 
However, h(r) diverges at large r. Inside region III, the 
solution is complex, yielding both real and imaginary parts for 
the distribution functions and thermodynamic properties. 

In a number  of respects, then, the A H S F  in the P Y approximat ion  
exhibits what  might  be regarded as anomalous  behavior. Nevertheless, it is 
the only one of two cases (the other being the Kac  model  [17]  of a hard 
core plus an infinitely weak and long-ranged at t ract ion)  for which the 
analytic solution of the P Y approximat ion  is known for a Hamil tonian  
exhibiting a vapor- l iquid  transition. For  this reason it is instructive to 
examine the extent to which the numerical  techniques can be used to 
elucidate the solution space. 

3. N U M E R I C A L  S O L U T I O N S  

In our  numerical  solutions we have used two methods. For  tem- 
peratures above critical we have used the method  of  Gillan [18] .  However,  
we found that it was difficult to achieve convergence reliably at low tern- 
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Fig. 2. The dimensionless inverse compressibility 
rn=l/kTc~P/Op for the AHSF obtained from the 
analytical solution. Six isotherms are illustrated: 
z/re = 1.0, 0.95, 0.9, 0.85, 0.8, and 0.75. Since the inverse 
compressibility is complex between the two 
singularities, only the real part is shown. Notice the 
asymmetry of the critical isotherm. 

peratures with this method. We therefore used a full Newton-Raphson 
technique for the subcritical temperatures. Such a technique was first used 
by Watts [19] in a study of the P-Y and hypernetted chain theories for the 
Lennard-Jones 12-6 potential. Use of this technique has also made it 
straightforward to admit convergence to complex solutions. Ironically, the 
features of the AHSF model which render it analytically soluble in the P-Y 
approximation create some difficulties for the numerical solution. These 
come principally from the long-ranged contributions in Fourier space 
which arise from the delta function contribution to the direct correlation 
function. These contributions are easily identified and their contribution to 
the Fourier transforms may be handled analytically. 

The numerical techniques used in the present work are both based on 
the O-Z equation in Fourier space. This has the advantages that the con- 
volution in the O-Z equation is very simply evaluated and use of the fast 
Fourier transform further reduces the computation time for this step by an 
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order of magnitude. However, in evaluating the Fourier transforms one is 
perforce limited to the use of a finite cut off in r-space. This of course leads 
to errors at the critical point and on the spinodal curve, and these errors 
are an important source of discrepancy between the numerical and the 
analytical solutions as was found in the case of the MSA for the HCYF 
model. One possible approach to removing such errors is to consider 
numerical methods which do not require such a truncation. Some 
numerical methods based upon the Baxter factorization technique which 
fulfill this requirement are discussed in Ref. 16. We are currently 
investigating these methods and the results will be reported in a future 
publication. 

4. RESULTS 

We now consider the comparison of our numerical solutions with the 
analytical results, beginning with the behavior of the system near the 
critical point. We focus on the values of the critical exponents c5 and ~, 
which control the divergence of the isothermal compressibility along the 
critical isotherm and critical isochore, respectively. It is known from the 
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Fig. 3. The square root of the dimensionless inverse 
compressibility is shown as a function of the density 
from the numerical results at z=0.097475, which is 
very close to the critical isotherm. The results were 
obtained using Ar = 0.025G and r c -25,6a.  
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work of Baxter [13] that these exponents have the classical values (6 = 3, 
7-- 1) for the AHSF in the P-Y approximation. We have made a number 
of comparisons of isotherms of the inverse compressibility in the critical 
region from the numerical and analytical results. On the critical isotherm 
such a plot should be quadratic near the critical density. We find fairly 
large differences between the analytical and the numerical results near the 
critical density. For example, the isotherm at T = 0.0976 appears slightly 
subcritical in the analytical solution but is clearly supercritical in the 
numerical solution with the given parameters. We have made calculations 
with other solution parameters and have found that the agreement between 
the numerical and the analytical solutions is improved as the r-space cutoff 
is increased, as might be expcted. However, increasing the cutoff from 12.8a 
to 25.6a does not significantly effect the results at r = 0.0976. This indicates 
that very much larger values than these would be needed in order to bring 
the analytical and numerical solutions into agreement. Figure 3 shows the 
numerical results for the square root of the inverse compressibility at a 
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Fig. 4. The inverse compressibility as a function of z on 
isochores close to critical. The dashed lines give the numerical 
results for two densities which bound the critical density, and the 
solid line gives the analytical results on the critical isochore. The 
letters A, B, and C denote the value of ,00"3: A, 0.23; B, 0.24; and 
C, 0.2317. The numerical results were obtained using Ar= 0.025~r 
and ro = 25.6a. 
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temperature very close to critical, obtained using an r-space cutoff of 25.6a. 
Apart  from very close to the critical density on the low-density branch, 
linear behavior is clearly established. We can therefore conclude that a 
value of 6 = 3 may be reasonably safely deduced from the numerical 
solutions. A reasonable estimate of the critical point from the numerical 
solutions would be po = 0.235 _+ 0.002 and rc = 0.0975 _+ 0.0002. 

A value of 7 = 1 implies that on the critical isotherm, a plot of the 
inverse compressibility versus r should be linear. Figure 4 shows such a 
plot from our numerical solutions at two densities which bound the critical 
density together with the analytical results on the critical isochore. The 
plots demonstrate that a value of 7 = 1 may be deduced from the numerical 
solutions. 

We now turn to a consideration of the solutions in the two-phase 
region. As mentioned earlier, in these studies we have used a New- 
ton-Raphson  technique in our numerical work and have allowed c o n -  
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Fig. 5. The  pa rame te r  2 on the i so the rm at z =0.09.  The 
solid line gives the ana ly t ica l  results,  and  the dashed  line the 

numer ica l  results. The numer ica l  results  were ob ta ined  using 
Ar = 0.05a and  r c = 6.4a. 



582 Monson and Cummings 

vergence to complex solutions. In order to keep the dimension of the 
Jacobian within reasonable limits, we used a grid size, Ar, of 0.050 and an 
r-space cutoff of 6.4a in these calculations. Figure 5 shows a plot of the 
parameter 2 as a function of the density at z = 0.09 from the analytical 
solution and numerical solutions. Notice that between the cusps, which 
occur at the boundary of region III in Fig. 1, 2 has both real and imaginary 
parts. The agreement between the numerical and the analytical solutions is 
very good at a low density and at the highest densities. However, at inter- 
mediate densities the agreement is poor. This is not surprising since in 
regions II and III in Fig. 1, the analytical results indicate that h(r) becomes 
divergent at large r as the density increases. Such behavior cannot be 
reproduced in our numerical work because we use a finite cutoff in r-space. 
Equation (3) shows that only two solutions (which in region III are com- 
plex conjugates) for 2 are admitted in the analytical solution. In contrast, 
the numerical procedure gives rise to a multiplicity of solutions. We have 
found two pairs of complex conjugate solutions and one real solution using 
the numerical method, and we have no reason to assume that other 
solutions are not present. Results from one of the complex solutions and 
the real solution are illustrated in Fig. 5. There does not seem to be a con- 
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Fig. 6. The radial distribution function at pa 3= 0.14 and 
z = 0.09. The solid line gives the analytical results, and the 
dashed line the numerical results. The numerical results 
were obtained using Ar = 0.05a and r c = 6.4a. The top cur- 
ves are the results for the real part of the radial distribution 
function, and the bottom curves are those for the 
imaginary part. 



Solution of the Percus-Yevick Equation 583  

tinuous path of numerical solutions through the two-phase region. This 
may be related to the asymmetry of the model with respect to the critical 
point. The multiplicity of numerical solutions would seem to arise from the 
use of a finite r-space cutoff in the numerical work. Mier y Terfin et al. 
[-20] found three real solutions to the P-Y theory for the Lennard-Jones 
potential in the same region of the phase diagram using an algorithm based 
on a finite r-space cutoff, although complex solutions were not admitted 
and they were able to find a continuous path of solutions through the two- 
phase region. 

Figure 6 shows a comparison of the analytical and numerical results 
for g(r) at v = 0.09 and p = 0.14 which is a state just inside region III in 
Fig. 1 on the vapor side. The agreement is good except for a slight dif- 
ference in the imaginary part. We have made such comparisons at a higher 
density (p = 0.3) and find that the agreement is very poor. The analytic 
solution at this density yields two complex conjugate solutions. Both the 
real and the imaginary parts of g(r) are long ranged and oscillatory. 
Clearly, the numerical solutions based on a finite r-space cutoff cannot 
reproduce the behavior of the analytical solution. As mentioned above a 
multiplicity of solutions is found: two pairs of complex conjugate solutions 
and one real solution. 

5. SUMMARY AND DISCUSSION 

The results of this paper may be summarized as follows. Numerical 
solutions of the P-Y equation for the AHSF model using the Gillan 
method can give a quite accurate picture of the compressibility-equation 
critical point. The critical exponents ~ and 7 are correctly deduced to have 
classical values and the severe asymmetry of the critical isotherm is reflec- 
ted in the numerical results. We therefore conclude that careful numerical 
work should be able to elucidate such features of the critical behavior of 
other Hamiltonian models in the P-Y approximation when analytical 
solutions are not available. 

We have shown that the complex solutions to the P-Y equation which 
may be obtained by analytic continuation of Baxter's solution into region 
III in Fig. 1 can also be obtained by numerical methods. However, good 
agreement between the solutions is obtained only at the lower densities, 
where the distribution functions from the analytical solution do not diverge 
at large r. The preliminary studies of these questions in the present paper 
raise some intriguing questions concerning the behavior of the P-Y 
equation in the two-phase region. For example, it would be interesting to 
know if the low-temperature solution space of the AHSF in the P-Y 
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approximation is the same as that for more realistic Hamiltonians. Some 
evidence supporting this comes from the work of Watts 1-19] on the 12-6 
potential, but only real solutions were considered. Another question is that 
of the relationship between the closure approximation and the solution 
space. Indeed the results of this paper and of Ref. 16 show significant dif- 
ferences between the MSA for the HCYF and the P-Y theory for the 
AHSF. 

We hope to investigate these matters in future research. 
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